
Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

MODE CONFUSION ANALYSIS OF A FLIGHT GUIDANCE SYSTEM
USING FORMAL METHODS

Anjali Joshi, Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN 55455 USA

 Steven P. Miller, Advanced Technology Center, Rockwell Collins Inc.,
Cedar Rapids, IA 52498 USA

Mats P.E. Heimdahl, Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN 55455 USA

Introduction
Advancements in digital avionics systems have

accounted for much of the improvement in air
safety seen over the last few decades. At the same
time, the growing complexity of these systems
places greater demands on the flight crew and in-
creases the risk of mode confusion, a phenomenon
in which pilots become confused about the status of
the system and interact with it incorrectly. To fly
commercial flights today, pilots must master several
complex, dynamically interacting systems, often
operating at different levels of automation. These
systems typically have many different modes of op-
eration, with different responses to crew actions
and the other systems in each mode. Mode confu-
sion occurs when the flight crew believes they are
in a mode different than the one they are actually in
and consequently make inappropriate requests or
responses to the automation. Mode confusion can
also occur when the flight crew does not fully un-
derstand the behavior of the automation in certain
modes, i.e., when the crew have a poor “mental
model” of the automation [4], [10], [9]. This same
phenomenon is sometimes referred to by the more
general name of automation surprises.

There is mounting evidence that mode confusion is
an important safety concern. Several aircraft acci-
dents and incidents involving mode confusion are
listed in [7]. A study conducted by the Massachu-
setts Institute of Technology found 184 incidents
attributed to mode awareness problems in NASA's

 This work was supported in part by the NASA Aviation Safety
program and the Langley Research Center under Contract
NCC-01001.

Aviation Safety Reporting System (ASRS) [21]. In
a survey of 1,268 pilots published in 1999 by the
Australian Bureau of Air Safety Investigation
(BASI), 73% of the respondents indicated that they
had inadvertently selected a wrong mode. More-
over, 61% of the respondents agreed that there were
still things about the automation that took them by
surprise [2]. Of 536 interventions recommended by
the Loss of Control Joint Safety Analysis Team
(JSAT), they recommended improved training of
automated flight systems as their 6th most important
intervention and improved feedback from the auto-
mation as their 22nd most important intervention [6].
Advisory Circular AC/ACJ 25.1329 on Flight
Guidance System Approval identifies “autoflight
mode confusion as a significant safety concern” [1].

The basic premise behind detecting mode con-
fusion through analysis of system requirements or
design specifications is that certain design features
or patterns are more likely to cause mode confusion
than others. Studies by Sarter and Woods have
found evidence for this hypothesis [17], [18], [19],
[20], and Leveson, et. al. [9] used their work to
identify several categories of problematic design
features. In [10], we extended this work with addi-
tional examples from the literature and a checklist
of specific design features to be searched for during
manual reviews. This taxonomy and checklist was
used as the basis for an informal review for poten-
tial sources of mode confusion in a representative
specification of a Flight Guidance System mode
logic [11], [12].

This paper describes the use of automated
analysis tools, such as model-checkers [5] and
theorem provers [13], to search for potential

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

sources of mode confusion in a representative
specification of the mode logic of a Flight Guidance
System [11].

The Problem Domain
In our studies we have used the Flight Guid-

ance domain. The following sub-sections provide a
brief overview of the Flight Guidance System with
an emphasis on the mode logic.

The Flight Guidance System
A Flight Guidance System (FGS) is a compo-

nent of the overall Flight Control System (FCS). It
compares the measured state of an aircraft (position,
speed, and altitude) to the desired state and gener-
ates pitch and roll guidance commands to minimize
the difference between the measured and desired
state. A simplified overview of an FCS that empha-
sizes the role of the FGS is shown in Figure 1.

Control
Surface

FMSL

Mode
Logic

Control
Laws

Mode
Logic

Auto
pilot PFDRPFDL

Air
DataL

Air
DataR

FMSR

FCP

FGSR
FGSL

Control
Laws

Figure 1: A section of the Avionics System

The flight crew interacts with the FGS primar-
ily through the Flight Control Panel (FCP). The
FCP includes switches for turning the Flight
Director (FD) on and off, and switches for selecting

the different flight modes. The FCP also supplies
feedback to the crew, indicating selected modes by
lighting lamps on either side of a selected mode's
switch.

The mode logic determines which lateral and
vertical modes of operation are active and armed at
any given time. These in turn determine which
flight control laws are active and armed. These are
annunciated, or displayed, on the Primary Flight
Displays (PFD) along with a graphical depiction of
the flight guidance commands generated by the
FGS. The Primary Flight Display annunciates es-
sential information about the aircraft, such as air-
speed, vertical speed, altitude, the horizon, and
heading. The active lateral and vertical modes are
annunciated at the top of the display.

The Flight Guidance System Mode Logic
A mode is defined by Leveson et. al. as a

mutually exclusive set of system behaviors [9]. The
primary modes of interest in an FGS are the lateral
and vertical modes. The lateral modes control the
behavior of the aircraft about the longitudinal, or
roll, axis, while the vertical modes control the
behavior of the aircraft about the vertical, or pitch,
axis. In addition, there are a number of auxiliary
modes, such as half-bank mode, that control other
aspects of the aircraft's behavior.

A mode is said to be selected if it has been
manually requested by the flight crew or if it has
been automatically requested by a subsystem such
as the FMS. The simplest modes have only two
states, cleared and selected. Some modes can be
armed to become active when a criterion is met. In
such modes, the two states armed and active are
sub-states of the selected state. Some modes also
distinguish between capturing and tracking of the
target reference or navigation source. Once in the
active state, such a mode's flight control law first
captures the target by maneuvering the aircraft to
align it with the navigation source or reference.
Once correctly aligned, the mode transitions to the
tracking state that holds the aircraft on the target.
Both the capture and track states are sub-states of
the active state and the mode's flight control law is
active in both states.

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

The mode logic consists of all the available
modes and the rules for transitioning between them.
Figure 2 provides an overview of the Flight Guid-
ance System modes. Traditionally, aircraft modes
are associated with a flight control law that deter-
mines the guidance provided to the flight director or
autopilot. For example, in Figure 2, there are lateral
modes of Roll Hold, Heading Hold, Navigation,
Lateral Approach, and Lateral Go Around. These
control the guidance about the longitudinal, or roll,
axis. Guidance about the vertical, or pitch, axis is
controlled by the vertical modes of Pitch, Vertical

Speed, Altitude Hold, Altitude Select, Vertical Ap-
proach, and Vertical Go Around. Each of these
modes are associated with one or more control
laws.

In order to provide effective guidance of the
aircraft, these modes are tightly synchronized.
Constraints enforce sequencing of modes that are
dictated by the characteristics of the aircraft and the
airspace. The mode logic is responsible for enforc-
ing these constraints.

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

Flight Modes
On

Vertical Modes

Off

Lateral Modes

Vertical Approach

Selected

Armed
Cleared

Active

Altitude Select

Selected

Cleared

Vertical Go Around

SelectedCleared

Navigation
Selected

Armed
Cleared

Active

Lateral Approach

Selected

Armed
Cleared

Active

Pitch
SelectedCleared

Vertical Speed
Selected

ClearedSltitupe SoldSelected

ClearedSoll SoldSelectSelect

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

Language), which was developed by Nancy
Leveson’s group at University of California, Irvine.

Mode Confusion Analysis
The basic premise behind detecting mode con-

fusion through analysis of system requirements or
design specifications is that certain design features
or patterns are more likely to cause mode confusion
than others. Studies by Sarter and Woods have
found evidence for this hypothesis [17], [18], [19],
[20], and based on these studies, Nancy Leveson, et.
al. [9] identified categories of design patterns that
have historically been a source of mode confusion.
In [4] and [10], we elaborated on a few of these
categories and sketched out a direction for
approaching mode confusion analysis using formal
methods. The authors also noted the need for under-
standing these categories well enough to formalize
them mathematically so as to perform formal analy-
sis. In this section, we first discuss the general strat-
egy of our formal approach to mode confusion
analysis. We then introduce the formal methods
tools that we used for the mode confusion analysis
and discuss their applicability to this type of analy-
sis. Finally, we provide a few examples of the
formalization of mode confusion properties and
performing the analysis with the help of these tools.

Formal Approach to Mode Confusion
Analysis

A novel aspect of our approach to mode confu-
sion analysis is that it emphasizes the use of formal
verification tools for exploration rather than verifi-
cation. In verification, one postulates a property
that is believed to be true of a model and uses the
verification tool to determine if the property holds
or not. When used for exploration, one postulates a
property that is probably false of the model, and
uses the verification tool to generate insights into
why the property is false.

For example, transitions to infrequently seen,
or off-normal, modes are often cited as a potential
source of mode confusion [9], [18]. Identifying all
the scenarios that can cause an off-normal mode to
be entered may not be obvious in a complex speci-
fication. The following paragraphs cast this

example as both a verification and an exploration
problem and describe our approach in each case.

When approached as a verification problem,
we first enumerate all the acceptable ways of
entering the mode and then verify that it is indeed
an exhaustive list. If we are unable to verify this,
i.e., there are other ways by which we can enter the
mode, we consider it to be an error in the
specification, change the specification to remove
the error, and repeat the process until the original
property is verified. The verification process can
thus be viewed as one of debugging the specifica-
tion to remove errors in it.

When approached as an exploration problem,
our aim is to search for all the unknown ways by
which the mode can be entered. To do this, we
postulate that there are no ways by which the mode
can be entered, then use the formal verification tool
to identify the ways in which this is not true, then
amend our property to state that there are no
scenarios by which the mode can be entered except
for these, and repeat the process until the property is
true. This list of ways in which the mode can be
entered can then be reviewed with pilots and
engineers to determine if any of them pose an
unacceptable risk of pilot confusion.

Most of the mode confusion analysis falls un-
der the exploration category, as we are typically
searching for new scenarios that may be a potential
source of mode confusion.

Formal Methods Tools
To analyze the FGS model for Mode confu-

sion, we made use of two analysis tools– the PVS
theorem prover and the NuSMV model checker.

The NuSMV Model Checking System
Model checking is a formal verification tech-

nique that allows one to check for safety and live-
ness properties of a model through exhaustive ex-
ploration of the state space. This makes verification
of properties highly automated and straightforward.
However, state space explosion limits the size of
the models that can be analyzed.

NuSMV is a re-implementation and extension
of SMV [5], the first model checker based on

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

BDDs. NuSMV has been designed to be an open
architecture for model checking, which can be re-
liably used for the verification of industrial designs,
as a core for custom verification tools, as a testbed
for formal verification techniques, and applied to
other research areas [13]. Properties to be verified
in NuSMV are specified using either branching
time logic (CTL) or linear time logic (LTL) [5].

The PVS Theorem Proving System
In contrast to model checkers, theorem provers

apply rules of inference to a specification in order
to derive new properties of interest. Theorem
provers are generally harder to use than model
checkers, requiring considerable technical expertise
and understanding of the specification. However,
theorem provers are not limited by the size of the
state space. Also, some properties that cannot be
easily specified using model checkers, such as
comparing properties of two arbitrary states that are
not temporally related, can be easily specified in the
languages of most theorem provers.

PVS is an environment for specification and
verification that has been developed at SRI Interna-
tional’s Computer Science Laboratory. The system
consists of a specification language, a parser, a type
checker, and an interactive proof checker. The PVS
specification language is based on higher order
logic with a richly expressive type system so that a
number of semantic errors in specification can be
caught during type checking. The PVS prover con-
sists of a powerful collection of inference steps that
can be used to reduce a proof goal to simpler sub-
goals that can be discharged automatically by the
primitive proof steps of the prover. The primitive
proof steps involve, among other things, the use of
arithmetic and equality decision procedure, auto-
matic rewriting, and BDD-based Boolean simplifi-
cation [13].

Applicability of the Formal Methods Tools to
Mode Confusion Analysis

Earlier studies support the applicability of
model checkers and theorem provers for mode con-
fusion analysis [4], [15], [16]. To make these for-
mal analysis tools applicable to our domain, the
critical systems research group at the University of

Minnesota built translators from the RSML-e
specification language to the input languages of
NuSMV and PVS, allowing us to apply these
formal analysis tools to the translated RSML-e
specification. We used these tools to analyze the
translated FGS specification [11] originally defined
in RSML-e for some of the patterns identified in the
mode confusion taxonomy [10]. This analysis using
NuSMV and PVS is described below.

When given a verification type of mode confu-
sion property, the NuSMV model checker can de-
termine either that the property is true or that there
is an error in the specification indicated by a
counter-example. When checking a false property,
NuSMV can find only one counter-example at a
time. For performing exploratory analysis with the
help of NuSMV, we need to proceed by dismissing
each counter-example that we encounter by adding
that condition as a known way of violating the
property and repeating the process until the prop-
erty is verified. Sometimes NuSMV will generate
several counter-examples due to a single higher-
level condition. In this case, the user may need to
find a single stronger condition that encompasses
all the specific counter-examples. Extracting rele-
vant information from the counter-examples is a
difficult job that often requires domain expertise.

Since the FGS mode logic consists almost en-
tirely of enumerated and Boolean types, it is ideally
suited to verification through model checking. Not
surprisingly, proving a property of the mode logic
with PVS usually required more effort than with
NuSMV. If our specification had included more
integer or real variables, this situation would
probably have been quite different. One surprise
was that once completed, the PVS proofs often ran
faster than the corresponding proof in NuSMV.

One advantage of using PVS for the ex-
ploratory analysis is that it lists all the violations of
the property as un-dismissed sub-goals of the proof
tree. With adequate knowledge of the domain, the
user can recognize an unprovable sub-goal at a
higher level in the proof tree. This avoids the bur-
den of extracting stronger conditions as in NuSMV.
Conversely, the user can proceed down the proof
tree by proving parts of a sub-goal to get a more
refined condition. An advantage of using PVS is

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

that the user has finer control of the level of detail
exposed in the sub-goals.

We found both NuSMV and PVS useful in
performing our analysis. Since the mode logic lends
itself so well to model checking, the level of auto-
mation provided by NuSMV would often save us
considerable time and effort. On the other hand, a
skilled user of PVS could often gain insights while
doing the proof that might be missed using
NuSMV. We also encountered some properties that
could not be specified in CTL or LTL but could be
expressed in PVS. These are discussed later.

Examples of Mode Confusion Patterns
and their Analysis

We analyzed our specification for several
patterns that might indicate a potential source of
mode confusion. In the following sub-sections, we
will describe in detail the formalization and analysis
of three major patterns. The analysis of the
remaining patterns was similar to these and hence is
described here only briefly.

Transitions between Normal and Off-normal
Modes

Sarter and Woods [18] found that most
difficulties related to mode confusion occur during
off-normal, time critical situations such as aborted
takeoff, disengagement from an automatic mode
during approach, or loss of glide slope signal during
final approach. In a complex specification, it may
be difficult to determine all the scenarios under
which an off-normal mode can be entered or exited.
Formal analysis tools such as a model checker or
theorem prover can be used to identify the
conditions under which these modes can be entered
or exited.

The general strategy to identify all the ways a
system can enter a mode is to first prove that the
system will indeed enter the mode for all the known
ways, and then try to prove that if none of these
conditions exist, the system will not enter the mode.
This will identify any unforeseen ways in which the
mode can be entered, which are then added to the
list of known ways. This process is repeated until

all the ways to enter the mode are identified. The
process is similar for finding all the ways a mode
can be exited.

A committee consisting of engineers, pilots,
and specialists in human factors identified Roll,
Pitch, and Overspeed modes as off-normal modes.
The selection of Roll and Pitch as off-normal modes
may be surprising, as these are the default modes of
operation. However, in our example, they are never
directly selected by the pilot. Instead, they are de-
fault modes that become active when the active
mode is deselected, either by the pilot or by the
system. For this reason, there are many ways to en-
ter these modes.

We performed an analysis of the ways ROLL
and Overspeed mode could be entered using both
PVS and NuSMV. When analyzing for ROLL
mode, we started with nineteen known ways of en-
tering ROLL mode. The first step was to verify that
each of these nineteen conditions indeed caused
entry into ROLL mode. This step frequently re-
vealed exceptions, forcing the conditions to be
strengthened. For example, in PVS, the condition,
that ROLL mode is entered when the FLC switch is
pressed while the mode annunciations are turned off
was originally stated as:
ROLL_Selected_If_FLC_Switch_Pressed_While_Modes
_Off: LEMMA =

verify((Is_This_Side_Active AND

NOT PREV(Is_ROLL_Selected) AND

NOT PREV(Mode_Annunciations_On) AND

When_FLC_Switch_Pressed_Seen) IMPLIES

ROLL == L(Selected))

The verification of this property lead to an unprov-
able sequent in PVS (and a counter-example in
NuSMV) pointing out that HDG mode rather than
ROLL mode would be selected if the pilot or copi-
lot pressed the HDG switch at the same time the
FLC switch was pressed. Consequently, the condi-
tion was modified to state that ROLL mode would
be entered if the modes are off and the FLC switch
is pressed and no other lateral model is requested
at the same time. After all the known ways in which
ROLL mode can be entered were proven, these
were encoded in a condition,

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

ROLL_Selected_Known_Ways, and the following
theorem was defined to verify that this was indeed
an exhaustive list of conditions causing entry into
ROLL mode:
ROLL_Not_Selected: THEOREM

verify(((NOT (PREV(ROLL)) == L(Selected)) AND

NOT ROLL_Selected_Known_Ways) IMPLIES

NOT (ROLL == L(Selected)))

Attempting to prove this theorem lead to unprov-
able sub-goals, which in turn lead to the discovery
of two additional ways of entering ROLL mode that
had been overlooked. We finally ended up with an
exhaustive list of twenty-one different ways of en-
tering ROLL mode. While none of these were sur-
prising in retrospect, it is notable that individuals
familiar with the specification were unable to come
up with an exhaustive list without formal analysis.

Unintended Side Effects
Unintended side effects occur when an action

intended to have one effect has an additional effect
not anticipated by the operators [9], [18]. These can
include unanticipated mode changes or changes in
the system state. Examples include changing a
mode when a new target value is entered, clearing
related data when new data are entered, or changing
a mode for one controller when a mode in a differ-
ent controller is changed. Not all side effects are
undesirable. Often, they provide convenient short-
cuts for the operator, such as turning the system on
if it is off when selecting a system function, or
clearing out data that is no longer valid. In some
cases, the absence of the side effect may itself be a
source of mode confusion if the operator anticipates
the side effect as a natural consequence of the
original operator action.

An effective way of identifying unintended
side effects, as well as several other potential
sources of mode confusion, is to identify the
response of the system to each operator input. Since
we already have an RSML-e specification of how
the system responds to all its inputs, it is possible to
prove that the new partial specification (i.e., the
response of the system to a single operator input) is
consistent with the full specification. Typically, this
proof identifies several exceptions, which are the

side effects that are not well understood. We conse-
quently revise the specification of the expected
system response until we have captured the actual
system response to the operator input. These speci-
fication fragments provide valuable insight into
how the system behaves in a format that is often
obscured by the full model. Reviewing these
specification fragments with pilots and experts in
human factors can lead to the identification of
several potential sources of mode confusion.

The first step in this process is to identify the
possible operator inputs and to define the notion of
the system state. The next step is to specify how the
system state variables change in response to each
operator input. For the purpose of this analysis, it is
convenient to specify this change in state as a pri-
mary effect and several secondary effects.

For example, PVS can be used to detect unin-
tended side effects by defining what the primary
effect of each operator input should be, and then
trying to prove that for every state, the effect of that
input is only the primary effect. The exceptions to
this proof are the side effects. The proof statement
can then be strengthened to state the effect of the
input is the primary effect and all of the side ef-
fects. In this way, the list of side effects can be
enumerated.

To keep the proofs manageable, we chose to
do this by defining how each component of the
system state responds to each operator input. For
example, based on our experience with the FGS
system, we postulated that the effect of pressing the
FD switch on the first component of the system
state, the autopilot (AP), was to not affect the AP
state at all. This is stated in PVS as the lemma:
FD_Switch_AP_Side_Effects : LEMMA

verify((Is_This_Side_Active AND

When_FD_Switch_Pressed_Seen)

 IMPLIES (AP == PREV(AP)))

which claims that if this side of the FGS is active
and the FD switch is pressed and no higher priority
event preempts the pressing of the FD switch, then
the state of the AP is just its value in the previous
state. This lemma is easily proven in PVS in a few

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

seconds, confirming that pressing the FD switch has
no side effects on the AP.

The situation becomes more interesting as we
proceed to the display of the lateral and vertical
mode annunciations. The mode annunciations are
turned on when either the onside or the offside FD
are turned on and are turned off when both the on-
side and offside FDs are turned off. However, we
wish to define this not in terms of the onside and
offside FD, but in terms of the FD switch. After a
few iterations defining the behavior of the RSML-e
mode annunciations when the FD switch is pressed
and trying to prove that behavior agrees with the
model, we proved the following PVS lemma
FD_Switch_Modes_Effects : LEMMA

verify((Is_This_Side_Active AND

 When_FD_Switch_Pressed_Seen) IMPLIES

 IF PREV(Modes) == L(Off)

THEN Modes == L(On)

ELSE

 IF (PREV(Onside_FD) == L(Off) OR

 Overspeed_Condition OR

 Is_AP_Engaged OR

 Offside_FD == L(On))

 THEN Modes == L(On)

 ELSE Modes == L(Off)

 ENDIF

ENDIF)

This lemma states that if this side of the FGS is
active and the FD switch is pressed and no higher
priority event preempts the FD switch, then if the
mode annunciations were off in the previous state,
they will be turned on. If the mode annunciations
were on in the previous state, then if the onside FD
was on in the previous state, or an Overspeed con-
dition exists, or the AP is engaged, or the offside
FD is on, then the mode annunciations will remain
on. Otherwise they will be turned off. As shown by
this simple proof, pressing the FD switch has rather
complicated side effects on the mode annunciations.
The remaining question is whether these side ef-
fects are appropriate, a question best answered by
experts in human factors and pilots. Depending on
the audience’s comfort with mathematical logic, it

may be necessary to present these results in a more
intuitive format.

This process is continued for each operator in-
put and each component of system state in order to
generate a complete description of how the system
state responds to each operator input. As shown by
these examples, the response of the system to each
input can be surprisingly complex. Even for some-
thing as simple as pressing the FD switch, the au-
thors of the full FGS specification found it difficult
to predict how each component of the system state
would change without using formal analysis.

Indirect Mode Changes / Hidden Modes
Indirect mode changes occur when the auto-

mation changes mode without an explicit instruc-
tion by the operator. Indirect mode changes are a
natural consequence of delegating tasks to the
automation and cannot be eliminated without losing
the benefits of automation. At the same time, indi-
rect mode changes are obvious sources of mode
confusion. Most indirect mode changes can be eas-
ily identified through inspection simply by review-
ing how the non-operator inputs are used.

A mode is operationally relevant if the system
responds differently to operator or sensor inputs
while in that mode. Hidden modes are operationally
relevant modes that are not annunciated. The entry
of a hidden mode differs from an indirect mode
change in that the operator receives no indication of
the change in behavior. While this is technically the
same thing as an un-annunciated indirect mode
change, hidden modes seem to be so frequently in-
volved in incidents of mode confusion that we have
chosen to identify them as a separate category.

Finding hidden modes in a large, complex
system appears to be an intrinsically hard problem.
These modes are hidden precisely because they are
buried in a sea of complex logic. What is needed is
a systematic way to search a large, complex
specification for hidden modes of behavior.
Fortunately, the same approach that was used to
search for unintended side effects can be used to
detect hidden modes. The basic idea is to determine
the change in the system state for each operator in-
put, i.e., to differentiate the specification with re-

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

spect to each operator input. This breaks a large,
complex specification down into many small frag-
ments that can be easily reviewed. Hidden modes
are identified by asking whether the pilot has suffi-
cient information to predict how each new state
value will be changed in response to the operator
input. Situations where the pilot does not have
sufficient information indicate the presence of a
hidden mode.

For example, consider the FD_Switch_Mode_
Effects lemma described in the discussion of unin-
tended side effects. This lemma states that the new
value of the mode annunciations are determined by
values of the previous system state (i.e.,
PREV(Modes) and PREV(Onside_FD)), and the
current inputs (i.e., Overspeed_Condition,
Is_AP_Engaged, and Offside_FD). The key ques-
tion is whether these values are available to the pi-
lot. The status of the mode annunciations and the
onside FD cues in the previous step are available on
the Primary Flight Display (PFD).1 The current
status of the autopilot (AP) is also displayed on the
PFD. An overspeed condition is annunciated by
both aural and visual alarms. However, the status of
the offside FD is visible to the pilot only by looking
at the copilot’s display (and vice-versa). If the
offside FD is not adequately visible to the pilot,
there is no way for the pilot to predict whether the
mode annunciations will turn off when pressing the
FD switch. This is a hidden mode.

While this is probably not a significant source
of mode confusion, it does illustrate a systematic
process by which hidden modes can be detected. In
effect, the exact same analysis done to identify un-
intended side effects can also be used to detect hid-
den modes.

Operator Authority Limits / Ignored Operator
Commands

Operator authority limits restrict the control of
the operators in order to prevent the system from
entering a hazardous state. An obvious danger of
operator authority limits is that they may prohibit

1 We assume the pilot will recall the previous displayed values
given the standard 1/20th of a second refresh rate.

maneuvers that are required in extreme situations.
Another danger occurs when pilots are not aware
that these limits are in effect. Mode confusion can
also arise if the crew expects operator authority
limits to be in effect when they are not. This is es-
pecially true if the operator authority limits are pre-
sent in most but not all modes.

The operator authority limits of the most inter-
est are those related to continuous operator inputs,
such as moving the throttles or the yoke. Unfortu-
nately, the operator inputs in the FGS model are all
discreet inputs, such as pressing a mode switch or
engaging the autopilot. Ignored Operator
commands are a special case of operator authority
limits directly relevant to such discreet inputs.

Ignored operator commands commonly occur
when a system ignores an operator command, not to
prevent entry of a hazardous state, but because the
command is meaningless in the current mode. Sim-
ply ignoring an operator command may or may not
be appropriate. In some situations, the operator
should receive an indication of why the command
has been rejected so that they can correct their
mental model. Also, without an indication that a
command has been rejected, the operator may think
the command has been accepted, leading to further
confusion. In other situations, it may be clear both
that the request has been ignored and why and pro-
viding the operator with more feedback is unneces-
sary.

To detect all ignored operator commands so
that each can be reviewed, one attempts to prove
that every operator input causes some visible
change in the system state. The exceptions to this
proof are ignored operator commands. This analysis
closely follows the unintended side effects and
hidden modes and is not described here further.

Interface Interpretation Errors
Interface interpretation errors are those in

which the system interprets user-entered values dif-
ferently than intended or maps multiple conditions
onto the same output depending on the controller’s
current mode [9], [18]. If the users misunderstand
what mode the system is in, or have a poor mental
model and do not understand how the current mode

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

affects the inputs or the outputs, they are likely to
enter the wrong values or become confused about
what the system is telling them.

Potential input interpretation errors can be de-
tected by looking at each operator input and deter-
mining if its effect on the system state is dependent
on the current state of the system or other inputs.
The analysis for this is very similar to that de-
scribed to detect unintended side effects and hidden
modes.

Lack of Appropriate Feedback
An important source of mode confusion is lack

of appropriate feedback about the system [9], [18],
referred to by Billings as opacity [3]. Feedback
about the current system state is obviously essen-
tial, but operators also need feedback about pending
changes to allow them to anticipate system behavior
[9], [18].

An obvious source of mode confusion occurs
when the operator is not provided with sufficient
information to distinguish between two different
configurations of system modes. To detect this, we
need to define what it means for two arbitrary states
to have the same modes and what it means for two
states to have the same mode annunciations. As it is
not possible to express properties about two
arbitrary states in CTL, we found PVS better suited
for searching for this potential source of mode
confusion than NuSMV.

Reviewing the list of FGS state variables, we
determined that two states s1 and s2 have the same
lateral modes if the following PVS predicate holds:
same_lateral_modes(s1,s2): boolean =

ROLL(s1) = ROLL(s2) AND

 HDG(s1) = HDG(s2) AND

NAV(s1) = NAV(s2) AND

NAV_Selected(s1) = NAV_Selected(s2) AND

LAPPR(s1) = LAPPR(s2) AND

LAPPR_Selected(s1) =
LAPPR_Selected(s2) AND

LGA(s1) = LGA(s2)

Similarly, states s1 and s2 have the same vertical
modes if the following PVS predicate holds:

same_vertical_modes(s1,s2): boolean =

PITCH(s1) = PITCH(s2) AND

VS(s1) = VS(s2) AND

FLC(s1) = FLC(s2) AND

ALT(s1) = ALT(s2) AND

ALTSEL(s1) = ALTSEL(s2) AND

ALTSEL_Selected(s1) =
ALTSEL_Selected(s2) AND

ALTSEL_Active(s1) =
ALTSEL_Active(s2) AND

 VAPPR(s1) = VAPPR(s2) AND

VAPPR_Selected(s1) =
 VAPPR_Selected(s2) AND

VGA(s1) = VGA(s2)

Finally, we define two states s1 and s2 to have the
same modes if the following PVS predicate holds:
same_modes(s1,s2): boolean =

AP(s1) = AP(s2) AND

Pilot_Flying(s1) = Pilot_Flying(s2) AND

Onside_FD(s1) = Onside_FD(s2) AND

Overspeed(s1) = Overspeed(s2) AND

Modes(s1) = Modes(s2) AND

same_lateral_modes(s1,s2) AND

same_vertical_modes(s1,s2)

In a similar manner, we define what it means for
two states to have the same annunciations. To de-
tect a situation where two different mode configu-
rations have the same annunciations, we attempt to
prove the following theorem:
Distinct_Mode_Annunciations : THEOREM

(NOT same_modes(s1,s2)) AND

(Is_This_Side_Active(s1) = &(TRUE)) AND

(Is_This_Side_Active(s2) = &(TRUE)) IMPLIES

NOT same_annunciations(s1,s2)

This theorem claims that if states s1 and s2 do not
have the same modes, their mode annunciations
must also be different. To simplify the proof, we
consider only the case where this side of the FGS is
active for each state. Since an inactive FGS sets its
modes to those of the active side, this is sufficient
to show that distinct mode configurations will have
distinct mode annunciations.

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

While this theorem can be proven directly in
PVS for the FGS model, it is simpler and more effi-
cient to first prove a number of smaller lemmas re-
lated to each mode and then use these lemmas in the
proof of the theorem. For example, to ensure that
two states s1 and s2 with different Flight Director
modes have different pilot displays, we prove the
following lemma:
Distinct_Onside_FD_Annunciations : LEMMA

NOT (Onside_FD(s1) = Onside_FD(s2)) IMPLIES

NOT(Onside_FD_On(s1) = Onside_FD_On(s2)) OR

NOT (Is_This_Side_Active(s1)=

 Is_This_Side_Active(s2))

stating that if the modes of the onside Flight Direc-
tor (Onside_FD) are different in the two states, than
either the indicators sent to the PFD
(Onside_FD_On) must be different or the FGS can-
not be active in both states.

Similarly, to show that two states with differ-
ent ROLL modes have different displays, we prove
the lemma:
Distinct_ROLL_Annunciations : LEMMA

((NOT (ROLL(s1) = ROLL(s2))) AND

(Is_This_Side_Active(s1) = &(TRUE)) AND

(Is_This_Side_Active(s2) = &(TRUE)))

IMPLIES

NOT (Is_ROLL_Active(s1) =

 Is_ROLL_Active(s2)) OR

NOT (Mode_Annunciations_On(s1) =

 Mode_Annunciations_On(s2))

Here, it is necessary to verify that either the value
sent to the PFD if ROLL mode is active
(Is_ROLL_Active) or the value sent to the PFD to
turn the mode annunciations on
(Mode_Annunciations_On) are different in the two
states. This is because Is_ROLL_Active is false if
ROLL mode is cleared (i.e., not selected) or if the
mode annunciations are turned off.

The lemmas proven for each mode are then
used to prove the overall theorem and show that any
two states with different mode configurations must
have different displays to the pilot in our model.

Conclusion
Mode awareness has been identified by several

researchers, the FAA, and the aviation industry as
an important safety concern. Despite this level of
interest, finding ways to detect and mitigate poten-
tial sources of mode confusion remains as much an
art as a science. The basic premise behind our ap-
proach is that certain design features or patterns are
more likely to cause mode confusion than others.
This paper describes an approach in which require-
ments and design documents can be analyzed for
potential sources of mode confusion through the use
of automated analysis tools, such as model-checkers
and theorem provers.

In particular, we have shown how formal
analysis methods can be used to identify several
potential sources of mode confusion in a system
specification. Even though our analysis was only
partial, we were able to find hidden modes, ignored
operator inputs, unintended side effects, lack of
feedback regarding current modes, and surprises in
how off-normal modes can be entered and exited in
our example specification. It this analysis was
applied to an actual system, these potential sources
of mode confusion could be taken back to the
engineers, pilots, and experts in human factors for
closer review.

References
[1] Anonymous, February 1, 2002, Flight Guidance

System Approval, Joint Advisory Circular AC/ACJ
25.1329.

[2] Austrailian Bureau of Air Safety Investigation
(BASI), June-August 1999, Advanced-technology
Aircraft Safety Survey Report, Flight Safety
Digest, pg. 137-216,.

[3] Billings, Charles E., 1997, Aviation Automation:
the Search for a Human Centered Approach,
Lawrence Erlbaum Associates, Inc., Mahwah, NJ.

[4] Butler, Ricky W., Steven P. Miller, James N.
Potts, Victor A. Carreno, October 1998, A Formal
Methods Approach to the Analysis of Mode
Confusion, in Proceedings of the 17th AIAA/IEEE
Digital Avionics Systems Conference, Bellevue,
WA.

Published in the Proceedings of the 22st Digital Avionics Systems Conference (DASC'03), Indianapolis, Indiana, Oct. 12-
16, 2003. Selected as best paper of session.

[5] Clarke, Edmund M., Orna Grumberg, and Doron A.
Peled, 2001, Model Checking, The MIT Press,
Cambridge, Massachusetts.

[6] Commercial Aviation Safety Team, December 15,
2000, Final Report of the Loss of Control JSAT:
Results and Analysis, Paul Russell and Jay Pardee,
Co-Chairs,.

[7] Hughes, Dan, Michael Dornheim, January 30-
February 6, 1995, Automated Cockpits Special
Report, Parts I & II, Aviation Week & Space
Technology.

[8] Leveson, Nancy, Mats Heimdahl, Holly Hildreth,
Jon Reese, September 1994, Requirements
Specifications for Process-Control Systems, IEEE
Transactions on Software Engineering, 20(9):684-
707.

[9] Leveson, Nancy, L. Denise Pinnel, Sean David
Sandys, Shuichi Koga, Jon Damon Reese, March
1997, Analyzing Software Specifications for Mode
Confusion Potential, in Proceedings of a Workshop
on Human Error and System Development, C.W.
Johnson, Editor, pg. 132-146, Glasgow, Scotland.

[10] Miller, Steven P., February 2001, Taxonomy of
Mode Confusion Sources Final Report, NASA
Contractor Report.

[11] Miller, Steven P., Alan C. Tribble, Timothy M.
Carlson, Eric J. Danielson, November 2001, Flight
Guidance System Requirements Specification Final
Report, NASA Contractor Report.

[12] Miller, Steven P., February 2002, FGS Model
Visualization: Final Report, NASA Contractor
Report.

[13] NuSMV: A New Symbolic Model Checking,
available at http://nusmv.irst.itc.it/.

[14] PVS: Prototype Verification System, available at
http://www.csl.sri.com/projects/pvs/.

[15] Rushby, John, June 1999, Using Model Checking
to Help Discover Mode Confusions and Other
Automation Surprises, in the Proceedings of the 3
rd Workshop on Human Error, Safety, and System
Development (HESSD’99), Liege, Belgium.

[16] Rushby, John, Judith Crow, Everett Palmer,
October 1999, An Automated Method to Detect
Potential Mode Confusion, in the Proceedings of
the 18 th AIAA/IEEE Digital Avionics Systems
Conference (DASC), St. Louis, MO.

[17] Sarter, Nadine D., David D. Woods, April 1994,
Decomposing Automation: Autonomy, Authority,
Observability and Perceived Animacy, First
Automation Technology and Human Performance
Conference.

[18] Sarter, Nadine D., David D. Woods, 1995, How in
the World Did I Ever Get Into That Mode?, Mode
Error and Awareness in Supervisory Control,
Human Factors, 37(1), pg. 5-19.

[19] Sarter, Nadine D., David D. Woods, February
1995, Strong, Silent, and Out-of-the-Loop, CSEL
Report 95-TR-01, Ohio State University.

[20] Sarter, Nadine D., and David D. Woods, C. E.
Billings, 1997, Automaton Surprises, in Handbook
of Human Factors/Ergonomics, 2 nd Edition, G.
Salvendy (editor), Wiley, New York.

[21] Vakil, Sanjay S. and John R. Hansman,.Jr., 2002,
“Approaches to Mitigating Complexity-Driven
Issues in Commercial Autoflight Systems,”
Reliability Engineering and System Safety, Vol. 75,
pp. 133-145,.

[22] Whalen, Michael W., May 2000, A Formal
Semantics of RSML-e, Master’s Thesis, University
of Minnesota.

